Predicting Successful Memes Using Network and Community Structure

نویسندگان

  • Lilian Weng
  • Filippo Menczer
  • Yong-Yeol Ahn
چکیده

We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Meme Success with Linguistic Features in a Multilayer Backpropagation Network

The challenge of predicting meme success has gained attention from researchers, largely due to the increased availability of social media data. Many models focus on structural features of online social networks as predictors of meme success. The current work takes a different approach, predicting meme success from linguistic features. We propose predictive power is gained by grounding memes in ...

متن کامل

Modeling and simulating the emergence of Internet communities: impact of the spread of memes and agent memory

The spreading of memes on the web played an important role in the emergence of Internet communities. The principal purpose of the study is to implement a simulation model to analyze the process of emergence of Internet communities. The model shows the importance of factors such as the interactions between online agents as well as their propensity to adopt and remember new memes. In addition, it...

متن کامل

Microscopic Description and Prediction of Information Diffusion in Social Media: Quantifying the Impact of Topical Interests

A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model propagation of memes, i.e., pieces of information, between users in a social network similarly to the way diseases spread in human society. Naturally, many of these studies emphasize social exposure, i....

متن کامل

Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network

In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...

متن کامل

Virality Prediction and Community Structure in Social Networks

How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1403.6199  شماره 

صفحات  -

تاریخ انتشار 2014